AL

Writing usable APls in
practice

ACCU 2012 Conference, Oxford, UK
Giovanni Asproni

gasproni(@asprotunity.com
@gasproni

mailto:gasproni@asprotunity.com
mailto:gasproni@asprotunity.com

Summary

API definition

Two assumptions
Why bother with usability

Some techniques to improve usability

“Any well-defined interface that defines
the service that one component, module,

or application provides to other software
elements”

From:“Sometimes You Need to See Through Walls — A
Field Study of Application Programming Interfaces”,
Cleidson R. B. de Souza et al., http://www.ufpa.br/cdesouza/
pub/p390-desouza.pdf

http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654

Overview [EETIT) Cass Use Tree Deprecated Index Help Jara™ Matform
PREV PACKAGE NEXT PACKAGE Standard Ed.6

Package Javaormi

Provides the RMI package

See:
Description

|Interface Summary

l‘l’he Remote interface serves 10 identily imerfaces whose methods may be involed from a soa-Jocal vinual machine.

|Class Summary

AMareholledlbject contains 3 byto stovam with the serialized seprosestation of an object given fo its constructos,
The Neming class provides methods for storiag and obtaining seforences to remote objects in a remote object registry,

A vebclaas nlm used by RMI applications that vee downloaded code.

An RecessExoeption is thrown by ceman methods of the Jave xmd .Haning class Gpecifically bind redind. and unb bnd) and methods of the Java rwl setivation ActivationSystemimeriace 10 indicase that the caller does 5ot have permission b perform the stion
regeested by the method call
An AlrendyBoundl 1oeption is thrown if aa asemps i made 10 Dind aa ob ject in the registry 1o a name thas already has an asociaed biading

AConneatExaeption is thrown if a conmection is refused 8o the remote host for a remaote method call

AConneat IOE xception is thrown if an J0X xoeption occurs while making 3 coanection 8o the semote host for a remote method call

AMhrsho LExoeption is thrown if a3awve, 10, I0Except ion occurs while maschalling the semote call header, arguments or seturs value for 3 remote method call

AHoSuchlibjectl sgeption is thrown if 3o attempt is made 10 invake 2 method on an obpect that no longer exists in the remote vistual machine

ANotSoundE xcaption is thrown if an attempt is made to lookup or unbiad in the registry 3 name that has oo aociated biadiag,

Adarotel xoeption is the common sapescians Sor 2 number of communication related exceptsons that may eccur dening the execution of a remote method call,

|Deprecated. Ler SecusityEacaption insread.

AServerEeror ix thoowa as a result of 3 emote method isvocation when an Exror is thrown while processing the iavocation oa the server, cather while unmasvhalling the srpuments, executing the semote method itaelf, or manhalliag the retam valoe,
ASexverException is thrown ax a rewult of 2 semote method invocation when 3 JenoteExcaption is thrown while processing the iavocation oa the server, csther while unmasshalling the srpumeats or executing the semote method itself.
|Deprecated. no replocement

A3tublotFoundE zception is throws if 2 valid stub class could sot be found for a semote ob joct when it is exposted

An Une xpectedE sception is thrown if the clicat of a remote method call reccives, 3 a reault of the call, a checkad exception that is not among the chocked cxcoption types doclased in the throws clausc of the method ia the remote interface.

An UnknowrloatEzception i thrown if 3 jove .ret .UnknownHostE scept ion occun while creating a coancction to the semote hoat for 3 remote method call.

An UnwarshalE xcept ion can be thrown while unmanballing the parsmeten or reaults of 2 semote method call if say of the following conditions eccur: if s exception occuny whilke samanballing the call header if the protocol Sor the setuen valec i snvalid if 2
Jhﬂ .ie . JOI seepticon occuss uamanhalliag parsmction (on the server side) o the sctura valuc (va the cliest side).

Package java.rmi Description

Provides the RMI package RMI ix Remote Method Invocation. It is a mochanism that casbles an objoct on one Java virteal machine to invoke methods on an objoct in another Java virtual machine. Any objoct that can be savokod this way must implement the Remote interface. Whea such an objoct i invoked, its sspuments s
“marshallod” and sent from the Jocal virtual machine 1o the semote onc, where the mpaments aoc " unmanshalled ” Whes the method terminates, the reaults are manshalled from the remote machine and seat to the caller's vimtual machine. I the method invocation sesults in an exceplson being thrown . the exception is indicated to caller.

Since:
ML NE

Qverview [XEIIITY Cass Use Tree Decracated Index Help o™ Plagirm
PREY PACKAGE NEXT PACKAGE FRAMES NOFRAMES Al Classes ey

Subzut a bug o feature
For further APl refercace aad developer documentation, see Java SE Developer Documestation. That documentation contass mose detasled, developer-targeted descriptions, with conceptual overviews, definitsons of torms, workarounds, and working code examples

Cogyright © 1993, 2011, Oeacle and/or its affilistes . All rights reacrved.

AL

Public and private APls

® |n this talk we define:

® Public APIs as APIs that are produced to
be given to third parties

® Private APIs as APIs that are created for
internal project use

AL

First assumption

Any non trivial software application
involves writing one or more APls

AL

Second assumption

When we talk about good code
we always mean usable code as
well

A
When talking about good
code...

® We always talk about principles we should
apply
® Single responsibility principle
Open closed principle

DRY (don’t repeat yourself)

Principle of least astonishment

® but it is not always clear how to apply them

8

AL

We will talk about

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

9

A
Why bother (company’s
perspective)

® APIs can be among a company's greatest assets
® Users invest heavily: buying, writing, learning
® Cost to stop using an APl can be prohibitive
® Can also be among company's greatest
liabilities
® Bad APIs result in unending stream of
support calls

Adapted from:“How to Design a Good APl and Why it
Matters”, Joshua Bloch, http://lcsd05.cs.tamu.edu/slides/

keynote.pdf

http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf

A
Why bother (programmer’s
perspective)

Fewer bugs to take care of

Code of higher quality

More productivity

Less frustration when solving a problem

Bad APIs result in unending stream of
support calls

A
Why bother (Arjan van
Leeuwen perspective)

® [ewer lines of code are better

® Jo promoting simple code with library
design

Affordances

An affordance is a quality of an object, or
an environment, that allows an individual
to perform an action. For example, a
knob affords twisting, and perhaps
pushing, while a cord affords pulling.

From: http://en.wikipedia.org/wiki/Affordance

http://en.wikipedia.org/wiki/Affordance
http://en.wikipedia.org/wiki/Affordance

A
Affordances: processing file

line by line in Java

BufferedReader reader;

try {
reader = new BufferedReader (new FileReader (“filename")) ;
while (true) {

String line = reader.readLine();

i1f (line == null) {
break;

}
processLine (line) ;
}
}

catch (Exception exc) {
// Do something here...

}
finally {

if (reader '= null) {
reader.close() ;

}

AL
Affordances that are easier
to see (almost Java)

File file = new File(“filename"“)) ;

try {
for (String line : file.readLines()) {
processLine (line) ;

}
}

finally {
file.close()

}

AL

And even easier (Python)

with open("filename") as infile:
for line in infile.readlines|():
processLine (line)

AL

Some important things for
usability

Abstraction level. The minimum and maximum levels of
abstraction exposed by the API

Working framework. The size of the conceptual chunk

(developer working set) needed to work effectively

Progressive evaluation. To what extent partially completed
code can be executed to obtain feedback on code
behaviour

Penetrability. How the API facilitates exploration, analysis,
and understanding of its components

Consistency. How much of the rest of an API can be
inferred once part of it is learned

Adapted from:“Measuring APl Usability”, Steven Clarke,
http://drdobbs.com/windows/ 84405654

|7

http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654

AL

Conceptual integrity

| will contend that conceptual integrity
is the most important consideration in
system design. It is better to have a
system omit certain anomalous
features and improvements, but to
reflect one set of design ideas, than to
have one that contains many good but
independent and uncoordinated ideas.

Fred Brooks,“The Mythical Man Month”

“Make Interfaces Easy to Use Correctly
and Hard to Use Incorrectly”

Scott Meyers, ‘97 Things Every
Programmer Should Know”

A
Golden Rule of APl Design

“It’s not enough to write tests for an APl you develop; you
have to write unit tests for code that uses your APl. When
you follow this rule, you learn firsthand the hurdles that

your users will have to overcome when they try to test
their code independently.”

Michael Feathers,“97 Things Every Programmer Should
Know”

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

“Ask, ‘YWhat Would the User
Do?" (You Are Not the User)”

Giles Colborne,“97 Things

Every Programmer Should
Know”

® |t puts you in the shoes of an user

® |f writing a test is painful, the design may
be wrong

® TJests will provide up to date
documentation and examples of use

TDD helps with

Abstraction level. It helps to limit the number
of abstractions in mainline scenarios

Working framework

Progressive evaluation

Penetrability. It provides examples on how the
various components interact with each other

Consistency. It is maintained by refactoring
the code

Adapted from:“Measuring APl Usability”, Steven Clarke,
http://drdobbs.com/windows/ 84405654

http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654

AL

The file example again

File file = new File(“filename")) ;
try {
for (String line : file.readLines()) {
processLine (line) ;

}
}

finally {
file.close ()

}

AL
And a version with more

abstraction levels

BufferedReader reader;

try {
reader = new BufferedReader (new FileReader (“filename")) ;
while (true) {

String line = reader.readLine();

i1f (line == null) {
break;

}
processLine (line) ;
}
}

catch (Exception exc) {
// Do something here...

}
finally {

if (reader '= null) {
reader.close() ;

}

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

® Reserve the simplest and most intuitive
names names for the entities used in the
most common scenarios

® Pick one word per concept

® Don’t be cute!

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

AL

What'’s wrong with these?

public interface Startable {

Startable start ()
throws AlreadyStartedException;

public interface Stoppable {

Stoppable stop()
throws AlreadyStoppedException;

AL

A better alternative

public interface Service {

void start ()
throws AlreadyStartedException;

void stop()
throws AlreadyStoppedException;

boolean isStarted|() ;

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

Explicit context

® This about the assumptions on the external
environment

® There are two kinds of context we are
interested in

® Deployment context

® Runtime context

AL

Deployment context

Dependencies on other APls
Assumptions on deployment paths
User permissions

etc.

AL

Runtime context

® Preconditions for calling methods (or
functions) or instantiating classes

® |nitialisation (and finalisation) steps

® etc.

AL

Be careful with global state

® Using globals (yes, singletons are globals) can impose
huge constraints in the testability and the usability of

the API

It will be difficult to use in a concurrent
environment

The setup of the tests can become extremely hard

It can be difficult to use some functionality if it
requires the setting of some magic variables with
no clear link to the functions and classes used

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

Error reporting

® Error reporting code is important for
usability

® Users need to know
® How errors are reported
® What is reported when

® What they can do about them

AL

Recovering from an error

® |t is important to classify error in a way
that makes recovery easy to do
programmatically

® Error codes
® Exception classes
® A mix of the above

® Jext messages are usually not good enough

39

AL
What is an error at one
level....

® ...May not be an error at another one

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

A
Two types of logging

® Support logging (errors and info) is part of the
user interface of the application. These messages are
intended to be tracked by support staff, as well as
perhaps system administrators and operators, to
diagnose a failure or monitor the progress of the
running system.

Diagnostic logging (debug and trace) is
infrastructure for programmers. These messages should
not be turned on in production because they’re in-
tended to help the programmers understand what’s
going on inside the system they're developing.

From:“Growing Object Oriented Code Driven by Tests”,
Steve Freeman and Nat Pryce, Addison Wesley

Location location = tracker.getCurrentlocation() ;

for (Filter filter : filters) {
filter.selectFor (location) ;

if (logger.isInfoEnabled()) {
logger.info("Filter " + filter.getName() + ", " + filter.getDate()
+ " selected for " + location.getName ()
+ ", i1s current: " + tracker.isCurrent(location));

From:“Growing Object Oriented Code Driven by Tests”,
Steve Freeman and Nat Pryce, Addison Wesley

AL

Location location = tracker.getCurrentlocation() ;

for (Filter filter : filters) {
filter.selectFor (location) ;
support.notifyFiltering(tracker, location, filter);

From:“Growing Object Oriented Code Driven by Tests”,
Steve Freeman and Nat Pryce, Addison Wesley

AL

Give the programmer a
choice

® The programmer may not be interested in
the logs of the API. Give he a chance to
turn them off

® But, if he is interested, give him a chance to
get them and use them on his own terms

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

AL

INII

Start specific and small

Don’t try to overgeneralise your design from the beginning.

® Solve a specific problem first and generalise later. Until you
use your code, it is unlikely that you’ll know in which direction

you want to generalise it

Provide one way only to do one thing.You can add more later if
necessary (with an 80% case for everybody and the 20% one for

whoever needs a finer grain of control)

Start with the 80% case first

It is always easier to remove constraints rather than to add them
later

YAGNI

A
Cohesiveness and coupling

® Make APIs highly cohesive and loosely coupled
Don’t create a “constants’ package or class
Don’t create an “exceptions” package
Util/Manager/Helper classes are usually evil
Put together things that belong together
Separate things that don’t belong together

Single responsibility is not one method per class

Bonus slide

® Order of function parameters

® A consistent ordering helps the user to
predict what comes next and where to
find what he's looking for.

From: http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease

49

http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease

A caveat

® Public APIs are more difficult to refactor. In
fact, some errors may actually become
features

® Techniques to refactor them usually involve
some form of deprecation and versioning

User’s perspective
Naming

Give control to the caller
Explicit context

Error reporting

Logging as a feature

Organisation of modules and classes

AL

Links

http://www.apiusability.org

“Sometimes You Need to See Through Walls — A Field Study of Application
Programming Interfaces”, Cleidson R. B. de Souza et al., http://www.ufpa.br/
cdesouza/pub/p390-desouza.pdf

“Measuring APl Usability”, Steven Clarke, http://drdobbs.com/windows/
184405654

http://en.wikipedia.org/wiki/Affordance

“How to Design a Good APl and Why it Matters”, Joshua Bloch, http://
lcsd05.cs.tamu.edu/slides/keynote.pdf

“What Makes APIs Difficult to Use?”, Minhaz Fahim Zibran, http://
paper.ijcsns.org/0/7_book/200804/20080436.pdf

http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-
improve-your-code-ease

http://www.apiusability.org
http://www.apiusability.org
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://en.wikipedia.org/wiki/Affordance
http://en.wikipedia.org/wiki/Affordance
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease

A

Kl’:I'::Design

GROWING
OpCr-OrNTen
SOFTWARL,
Guipen sy Tists

Software Fundamentals
Collcted ['.\;v:u L1
Davd L. Parnas

-
Clean Code

T

