
Writing usable APIs in
practice

ACCU 2012 Conference, Oxford, UK
Giovanni Asproni

gasproni@asprotunity.com
@gasproni

1

mailto:gasproni@asprotunity.com
mailto:gasproni@asprotunity.com

Summary

• API definition

• Two assumptions

• Why bother with usability

• Some techniques to improve usability

2

API

3

From: “Sometimes You Need to See Through Walls — A
Field Study of Application Programming Interfaces”,

Cleidson R. B. de Souza et al., http://www.ufpa.br/cdesouza/
pub/p390-desouza.pdf

“Any well-defined interface that defines
the service that one component, module,
or application provides to other software
elements”

http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654

4

Public and private APIs

• In this talk we define:

• Public APIs as APIs that are produced to
be given to third parties

• Private APIs as APIs that are created for
internal project use

5

First assumption

6

Any non trivial software application
involves writing one or more APIs

Second assumption

7

When we talk about good code
we always mean usable code as
well

When talking about good
code...

• We always talk about principles we should
apply

• Single responsibility principle

• Open closed principle

• DRY (don’t repeat yourself)

• Principle of least astonishment

• ...

• but it is not always clear how to apply them
8

We will talk about

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

9

Why bother (company’s
perspective)

• APIs can be among a company's greatest assets

• Users invest heavily: buying, writing, learning

• Cost to stop using an API can be prohibitive

• Can also be among company's greatest
liabilities

• Bad APIs result in unending stream of
support calls

10

Adapted from: “How to Design a Good API and Why it
Matters”, Joshua Bloch, http://lcsd05.cs.tamu.edu/slides/

keynote.pdf

http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf

Why bother (programmer’s
perspective)

• Fewer bugs to take care of

• Code of higher quality

• More productivity

• Less frustration when solving a problem

• Bad APIs result in unending stream of
support calls

11

Why bother (Arjan van
Leeuwen perspective)

• Fewer lines of code are better

• To promoting simple code with library
design

12

Affordances

13

An affordance is a quality of an object, or
an environment, that allows an individual
to perform an action. For example, a
knob affords twisting, and perhaps
pushing, while a cord affords pulling.

From: http://en.wikipedia.org/wiki/Affordance

http://en.wikipedia.org/wiki/Affordance
http://en.wikipedia.org/wiki/Affordance

Affordances: processing file
line by line in Java

14

BufferedReader reader;
try {
 reader = new BufferedReader(new FileReader(“filename“));
 while (true) {
 String line = reader.readLine();
 if (line == null) {
 break;

 }
 processLine(line);
 }
}
catch (Exception exc) {
 // Do something here...
}
finally {
 if (reader != null) {
 reader.close();
 }
}

Affordances that are easier
to see (almost Java)

15

File file = new File(“filename“));
try {
 for (String line : file.readLines()) {
 processLine(line);

 }
}

finally {
 file.close()
}

And even easier (Python)

16

with open("filename") as infile:
 for line in infile.readlines():

 processLine(line)

Some important things for
usability

• Abstraction level. The minimum and maximum levels of
abstraction exposed by the API

• Working framework. The size of the conceptual chunk
(developer working set) needed to work effectively

• Progressive evaluation. To what extent partially completed
code can be executed to obtain feedback on code
behaviour

• Penetrability. How the API facilitates exploration, analysis,
and understanding of its components

• Consistency. How much of the rest of an API can be
inferred once part of it is learned

17

Adapted from: “Measuring API Usability”, Steven Clarke,
http://drdobbs.com/windows/184405654

http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654

Conceptual integrity

18

I will contend that conceptual integrity
is the most important consideration in
system design. It is better to have a
system omit certain anomalous
features and improvements, but to
reflect one set of design ideas, than to
have one that contains many good but
independent and uncoordinated ideas.

Fred Brooks, “The Mythical Man Month”

19

“Make Interfaces Easy to Use Correctly
and Hard to Use Incorrectly”

Scott Meyers, “97 Things Every
Programmer Should Know”

Golden Rule of API Design

20

“It’s not enough to write tests for an API you develop; you
have to write unit tests for code that uses your API. When
you follow this rule, you learn firsthand the hurdles that
your users will have to overcome when they try to test
their code independently.”

Michael Feathers, “97 Things Every Programmer Should
Know”

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

21

22

“Ask, ‘What Would the User
Do?’ (You Are Not the User)”

Giles Colborne, “97 Things
Every Programmer Should

Know”

TDD

• It puts you in the shoes of an user

• If writing a test is painful, the design may
be wrong

• Tests will provide up to date
documentation and examples of use

23

TDD helps with

• Abstraction level. It helps to limit the number
of abstractions in mainline scenarios

• Working framework

• Progressive evaluation

• Penetrability. It provides examples on how the
various components interact with each other

• Consistency. It is maintained by refactoring
the code

24

Adapted from: “Measuring API Usability”, Steven Clarke,
http://drdobbs.com/windows/184405654

http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654

The file example again

25

File file = new File(“filename“));
try {
 for (String line : file.readLines()) {
 processLine(line);

 }
}

finally {
 file.close()
}

And a version with more
abstraction levels

26

BufferedReader reader;
try {
 reader = new BufferedReader(new FileReader(“filename“));
 while (true) {
 String line = reader.readLine();
 if (line == null) {
 break;

 }
 processLine(line);
 }
}
catch (Exception exc) {
 // Do something here...
}
finally {
 if (reader != null) {
 reader.close();
 }
}

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

27

• Reserve the simplest and most intuitive
names names for the entities used in the
most common scenarios

• Pick one word per concept

• Don’t be cute!

28

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

29

What’s wrong with these?

30

public interface Startable {
 Startable start()
 throws AlreadyStartedException;
}

public interface Stoppable {
 Stoppable stop()
 throws AlreadyStoppedException;
}

A better alternative

31

public interface Service {
 void start()
 throws AlreadyStartedException;

 void stop()
 throws AlreadyStoppedException;

 boolean isStarted();
}

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

32

Explicit context

• This about the assumptions on the external
environment

• There are two kinds of context we are
interested in

• Deployment context

• Runtime context

33

Deployment context

• Dependencies on other APIs

• Assumptions on deployment paths

• User permissions

• etc.

34

Runtime context

• Preconditions for calling methods (or
functions) or instantiating classes

• Initialisation (and finalisation) steps

• etc.

35

Be careful with global state

• Using globals (yes, singletons are globals) can impose
huge constraints in the testability and the usability of
the API

• It will be difficult to use in a concurrent
environment

• The setup of the tests can become extremely hard

• It can be difficult to use some functionality if it
requires the setting of some magic variables with
no clear link to the functions and classes used

36

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

37

Error reporting

• Error reporting code is important for
usability

• Users need to know

• How errors are reported

• What is reported when

• What they can do about them

38

Recovering from an error

• It is important to classify error in a way
that makes recovery easy to do
programmatically

• Error codes

• Exception classes

• A mix of the above

• Text messages are usually not good enough

39

What is an error at one
level....

• ...May not be an error at another one

40

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

41

Two types of logging

• Support logging (errors and info) is part of the
user interface of the application. These messages are
intended to be tracked by support staff, as well as
perhaps system administrators and operators, to
diagnose a failure or monitor the progress of the
running system.

• Diagnostic logging (debug and trace) is
infrastructure for programmers. These messages should
not be turned on in production because they’re in-
tended to help the programmers understand what’s
going on inside the system they’re developing.

42

From: “Growing Object Oriented Code Driven by Tests”,
Steve Freeman and Nat Pryce, Addison Wesley

43

From: “Growing Object Oriented Code Driven by Tests”,
Steve Freeman and Nat Pryce, Addison Wesley

Location location = tracker.getCurrentLocation();

for (Filter filter : filters) {

 filter.selectFor(location);

 if (logger.isInfoEnabled()) {
 logger.info("Filter " + filter.getName() + ", " + filter.getDate()
 + " selected for " + location.getName()
 + ", is current: " + tracker.isCurrent(location));

 }

}

44

From: “Growing Object Oriented Code Driven by Tests”,
Steve Freeman and Nat Pryce, Addison Wesley

Location location = tracker.getCurrentLocation();
for (Filter filter : filters) {
 filter.selectFor(location);
 support.notifyFiltering(tracker, location, filter);
}

Give the programmer a
choice

• The programmer may not be interested in
the logs of the API. Give he a chance to
turn them off

• But, if he is interested, give him a chance to
get them and use them on his own terms

45

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

46

Start specific and small
• Don’t try to overgeneralise your design from the beginning.

• Solve a specific problem first and generalise later. Until you
use your code, it is unlikely that you’ll know in which direction
you want to generalise it

• Provide one way only to do one thing. You can add more later if
necessary (with an 80% case for everybody and the 20% one for
whoever needs a finer grain of control)

• Start with the 80% case first

• It is always easier to remove constraints rather than to add them
later

• YAGNI

47

Cohesiveness and coupling

• Make APIs highly cohesive and loosely coupled

• Don’t create a “constants” package or class

• Don’t create an “exceptions” package

• Util/Manager/Helper classes are usually evil

• Put together things that belong together

• Separate things that don’t belong together

• Single responsibility is not one method per class

48

Bonus slide

• Order of function parameters

• A consistent ordering helps the user to
predict what comes next and where to
find what he's looking for.

49
From: http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease

http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease

A caveat

• Public APIs are more difficult to refactor. In
fact, some errors may actually become
features

• Techniques to refactor them usually involve
some form of deprecation and versioning

50

• User’s perspective

• Naming

• Give control to the caller

• Explicit context

• Error reporting

• Logging as a feature

• Organisation of modules and classes

51

52

Links
• http://www.apiusability.org

• “Sometimes You Need to See Through Walls — A Field Study of Application
Programming Interfaces”, Cleidson R. B. de Souza et al., http://www.ufpa.br/
cdesouza/pub/p390-desouza.pdf

• “Measuring API Usability”, Steven Clarke, http://drdobbs.com/windows/
184405654

• http://en.wikipedia.org/wiki/Affordance

• “How to Design a Good API and Why it Matters”, Joshua Bloch, http://
lcsd05.cs.tamu.edu/slides/keynote.pdf

• “What Makes APIs Difficult to Use?”, Minhaz Fahim Zibran, http://
paper.ijcsns.org/07_book/200804/20080436.pdf

• http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-
improve-your-code-ease

http://www.apiusability.org
http://www.apiusability.org
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://drdobbs.com/windows/184405654
http://en.wikipedia.org/wiki/Affordance
http://en.wikipedia.org/wiki/Affordance
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://lcsd05.cs.tamu.edu/slides/keynote.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://paper.ijcsns.org/07_book/200804/20080436.pdf
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease
http://www.codeproject.com/Articles/8707/API-Usability-Guidelines-to-improve-your-code-ease

Books

53

ptg6931361

From the Library of Giovanni Asproni

